DSP (File Format): Difference between revisions
Jump to navigation
Jump to search
>Aruki No edit summary |
>Aruki No edit summary |
||
Line 88: | Line 88: | ||
Sample decoding code ([https://github.com/kode54/vgmstream/blob/master/src/coding/ngc_dsp_decoder.c vgmstream] used as reference): | Sample decoding code ([https://github.com/kode54/vgmstream/blob/master/src/coding/ngc_dsp_decoder.c vgmstream] used as reference): | ||
< | <syntaxhighlight lang="c" line start="0" enclose="div">static const s8 nibble_to_s8[16] = {0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1}; | ||
s8 get_low_nibble(u8 byte) { | s8 get_low_nibble(u8 byte) { | ||
Line 140: | Line 140: | ||
} | } | ||
} | } | ||
}</ | }</syntaxhighlight> | ||
[[Category:Audio]] | [[Category:Audio]] | ||
[[Category:Metroid Prime]] | [[Category:Metroid Prime]] | ||
[[Category:Metroid Prime 2: Echoes]] | [[Category:Metroid Prime 2: Echoes]] |
Revision as of 18:01, 24 January 2015
The .dsp format is a common GameCube/Wii format for audio that comes with the SDK. It encodes sound using Nintendo's ADPCM codec. The same ADPCM codec is also embedded into several Retro Studios format, like AGSC; the CSMP format actually embeds the entire DSP format within it.
Header
Offset | Size | Description |
---|---|---|
0x0 | 4 | Sample count |
0x4 | 4 | ADPCM nibble count |
0x8 | 4 | Sample rate |
0xC | 2 | Loop flag; 1 means looped, 0 means not looped |
0xE | 2 | Format; always 0 |
0x10 | 4 | Loop start offset |
0x14 | 4 | Loop end offset |
0x18 | 4 | Always 0 |
0x1C | 2 × 16 | Decode coefficients; this is 8 pairs of signed 16-bit values |
0x3C | 2 | Gain; always 0 |
0x3E | 2 | Initial predictor/scale; always matches first frame header |
0x40 | 2 | Initial sample history 1 |
0x42 | 2 | Initial sample history 2 |
0x44 | 2 | Loop context predictor/scale |
0x46 | 2 | Loop context sample history 1 |
0x48 | 2 | Loop context sample history 2 |
0x4A | 2 × 11 | Padding |
0x60 | End of DSP header |
Audio Data
The ADPCM audio data is split up into multiple frames. Each frame is 8 bytes; it starts with a one-byte header, then has 7 bytes (or 14 samples) of audio data. For each frame, the bottom 4 bits are the scale value, and the top 4 bits are the coefficient index to use for the current frame.
Sample decoding code (vgmstream used as reference):
static const s8 nibble_to_s8[16] = {0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1};
s8 get_low_nibble(u8 byte) {
return nibble_to_s8[byte & 0xF];
}
s8 get_high_nibble(u8 byte) {
return nibble_to_s8[(byte >> 4) & 0xF];
}
s16 clamp(s32 val) {
if (val < -32768) val = -32768;
if (val > 32767) val = 32767;
return s16(val);
}
void DecodeADPCM(char *src, s16* dst, const DSPHeader& d)
{
s16 hist1 = d.initial_hist1;
s16 hist2 = d.initial_hist2;
s16 *dst_end = dst + d.num_samples;
while (dst < dst_end)
{
// Each frame, we need to read the header byte and use it to set the scale and coefficient values:
u8 header = *src++;
u16 scale = 1 << (header & 0xF);
u8 coef_index = (header >> 4);
s16 coef1 = d.coefs[coef_index * 2];
s16 coef2 = d.coefs[coef_index * 2 + 1];
// 7 bytes per frame
for (u32 b = 0; b < 7; b++)
{
u8 byte = *src++;
// 2 samples per byte
for (u32 s = 0; s < 2; s++)
{
s8 adpcm_nibble = (s == 0) ? get_high_nibble(byte) : get_low_nibble(byte);
s16 sample = clamp(((adpcm_nibble * scale) << 11) + 1024 + ((coef1 * hist1) + (coef2 * hist2)) >> 11);
hist2 = hist1;
hist1 = sample;
*dst++ = sample;
if (dst >= dst_end) break;
}
if (dst >= dst_end) break;
}
}
}